金融工程高智威|Alpha掘金系列之十二:排序学习对GRU选股模型的增强
(以下内容从国金证券《金融工程高智威|Alpha掘金系列之十二:排序学习对GRU选股模型的增强》研报附件原文摘录)
金选·核心观点 摘要 融入注意力机制的GRU表现优异 目前神经网络主流的三类编码器RNN,CNN,Transformer在量化选股领域均表现出了较强的预测效果,如何能使各类编码器发挥自身优势并有效结合成为学术界不断尝试的领域。我们参考DA-RNN两阶段注意力机制的设计思路,避免该模型在实际应用中潜在的问题,将注意力机制改为特征层面的权重分配,与GRU结合后具有明显的优势,在绝大部分指标上超越原本GRU模型。 排序学习思想与A股实证效果 我们参考了推荐系统和搜索引擎中普遍使用的排序学习思想,认为其使用场景和量化截面选股策略具有高度相似性。探讨对比了包括ListWise和PairWise两大类排序学习损失函数,部分损失函数能借助NDCG指标提升多头组合表现,且部分因子相较于传统MSE回归模型有一定提升效果,我们将相对有效且相关性相对较低的损失函数进行等全合成,发现合成后的因子在各款及股票池中表现均有增强。所得因子在全A股票池中IC均值为13.82%,多头年化超额19.69%,多头信息比率2.98。 使用多个Epoch模型参数对抗过拟合 在传统训练过程中,我们倾向于早停后只使用最好轮次的模型参数用于预测。但其面临的一个严重问题在于,训练集和验证集所得最优结果并不一定在样本外同样最优,因此存在严重的过拟合倾向。此处我们考虑,神经网络梯度下降至全局最优点本身应该追求“模糊的正确”,使用早停后验证集表现最优的5轮结果进行预测并取均值能有效缓解上述情况,从而在样本外地稳健性更好。经过对比,使用此方法所得因子在各股票池中均有一定提升。 结合排序学习与多轮参数对抗过拟合方案的指数增强策略 最终,我们对上述改进所得因子构建指数增强策略。其中,沪深300指数增强策略年化超额收益达到16.60%,超额最大回撤为3.78%。中证500指增策略年化超额收益19.20%,超额最大回撤4.25%。中证1000指增策略年化超额收益29.81%,超额最大回撤8.04%。 风险提示 以上结果通过历史数据统计、建模和测算完成,在政策、市场环境发生变化时模型存在失效的风险。
金选·核心观点 摘要 融入注意力机制的GRU表现优异 目前神经网络主流的三类编码器RNN,CNN,Transformer在量化选股领域均表现出了较强的预测效果,如何能使各类编码器发挥自身优势并有效结合成为学术界不断尝试的领域。我们参考DA-RNN两阶段注意力机制的设计思路,避免该模型在实际应用中潜在的问题,将注意力机制改为特征层面的权重分配,与GRU结合后具有明显的优势,在绝大部分指标上超越原本GRU模型。 排序学习思想与A股实证效果 我们参考了推荐系统和搜索引擎中普遍使用的排序学习思想,认为其使用场景和量化截面选股策略具有高度相似性。探讨对比了包括ListWise和PairWise两大类排序学习损失函数,部分损失函数能借助NDCG指标提升多头组合表现,且部分因子相较于传统MSE回归模型有一定提升效果,我们将相对有效且相关性相对较低的损失函数进行等全合成,发现合成后的因子在各款及股票池中表现均有增强。所得因子在全A股票池中IC均值为13.82%,多头年化超额19.69%,多头信息比率2.98。 使用多个Epoch模型参数对抗过拟合 在传统训练过程中,我们倾向于早停后只使用最好轮次的模型参数用于预测。但其面临的一个严重问题在于,训练集和验证集所得最优结果并不一定在样本外同样最优,因此存在严重的过拟合倾向。此处我们考虑,神经网络梯度下降至全局最优点本身应该追求“模糊的正确”,使用早停后验证集表现最优的5轮结果进行预测并取均值能有效缓解上述情况,从而在样本外地稳健性更好。经过对比,使用此方法所得因子在各股票池中均有一定提升。 结合排序学习与多轮参数对抗过拟合方案的指数增强策略 最终,我们对上述改进所得因子构建指数增强策略。其中,沪深300指数增强策略年化超额收益达到16.60%,超额最大回撤为3.78%。中证500指增策略年化超额收益19.20%,超额最大回撤4.25%。中证1000指增策略年化超额收益29.81%,超额最大回撤8.04%。 风险提示 以上结果通过历史数据统计、建模和测算完成,在政策、市场环境发生变化时模型存在失效的风险。
大部分微信公众号研报本站已有pdf详细完整版:https://www.wkzk.com/report/(可搜索研报标题关键词或机构名称查询原报告)
郑重声明:悟空智库网发布此信息的目的在于传播更多信息,与本站立场无关,不构成任何投资建议。