从DriveGPT看大模型如何赋能智驾
(以下内容从华泰证券《》研报附件原文摘录)
如果您希望第一时间收到推送,别忘了加“星标”! 核心观点 毫末发布自动驾驶首个生成式大模型:DriveGPT 4月11日,毫末举行第8届AI DAY,发布了纯视觉为主的DriveGPT大模型,该模型现阶段主要用于解决自动驾驶认知决策问题,可以通过输入驾驶场景数据进行多场景预测并规划最佳行径路途。目前DriveGPT已经包含4000万公里的量产车驾驶数据、1200亿参数,拥有19.6亿个30万类场景标签。DriveGPT将在今年新摩卡DHT-PHEV车型首发落地,提升HPilot高速/城市NOH安全性和流畅性。我们认为GPT大模型范式有望赋能垂直领域智能驾驶感知标注、决策推理等核心环节,加速智驾落地,同时大模型研发或推动驾驶数据和算力需求快速增长。建议关注L2级自动驾驶/AI算力产业链。 正文 DriveGPT:大模型赋能场景生成、轨迹预测、推理决策 毫末智行发布了其DriveGPT自动驾驶生成式大模型,具体逻辑:(1)感知环境离散化后作为token设计drive language;(2)输入大量驾驶场景数据,利用transformer模型生成系列决策结果;(3)RLHF:将人工挑选困难场景Clips(数据组)输入训练模型,对生成结果进行最优解排序;(4)Reward Model强化学习。DriveGPT目前可以根据历史一段时间驾驶场景序列数据,不断生成未来可能发生的多种驾驶环境并预测每种情况下车辆行驶轨迹。此外公司目前正设计利用prompt提示优化输出结果,并给DriveGPT加入思考链,使驾驶策略具备逻辑可解释性,解决transformer黑盒模式潜在问题。 机会:大模型有望解决行业数据标注准确率及成本困境 视觉识别是开发大模型的基础能力之一,识别传感器输入图像中的车道线、车辆、行人、交通灯等要素并进行数据标注才能获得大量的可用训练数据集。我们看到DriveGPT等大模型可以很好地自动识别图像以替代人工标注,据毫末会上表示,DriveGPT可以将交通场景图像的标注费用从行业平均约5元/张降至约0.5元/张,计划逐步向合作伙伴开放该服务。同时,我们认为近期Meta的CV模型SAM有望赋能自动驾驶行业,SAM无需额外训练即可自动完成分割,提升机器视觉,有利于自动驾驶可用训练集快速积累。 挑战:国内AI智能驾驶大模型应用普及仍面临数据需求和算力等挑战 (1)数据:DriveGPT目前参数量约1200亿,拥有约4,000万公里的量产车驾驶数据。参考行业龙头特斯拉2020年已有超48亿公里数据,大模型赋能下我们认为国内公司或将加快智能驾驶系统量产上车步伐,加快数据搜集回馈模型训练。(2)算力:特斯拉FSD背后拥有1.4W个GPU训练集群;毫末建设MANA OASIS中心给DriveGPT提供67亿次/秒的高性能浮点运算,2T/秒存储带宽,以及800G/秒通信带宽支持;小鹏计算中心“扶摇”提供算力达600PFLOPS。大模型、大数据驱动的智能驾驶对算力提出了更高要求,有望驱动算力基础设施需求。建议关注L2级自动驾驶/算力产业链。 点击查看原报告 风险提示:L3智能驾驶落地进度较缓,数据/算力积累程度不及预期。 本材料所载观点源自2023年4月12日发布的报告《从DriveGPT看大模型如何赋能智驾》,分析师:黄乐平 SAC No.S0570521050001 | 陈旭东 SAC No.S0570521070004 | SFC No.BPH392,对本材料的完整理解请以上述研报为准。 关注我们 华泰证券研究所国内站(研究Portal) https://inst.htsc.com/research 访问权限:国内机构客户 华泰证券研究所海外站 https://intl.inst.htsc.com/mainland 访问权限:美国及香港金控机构客户 添加权限请联系您的华泰对口客户经理 免责声明 ▲向下滑动阅览 本公众号不是华泰证券股份有限公司(以下简称“华泰证券”)研究报告的发布平台,本公众号仅供华泰证券中国内地研究服务客户参考使用。其他任何读者在订阅本公众号前,请自行评估接收相关推送内容的适当性,且若使用本公众号所载内容,务必寻求专业投资顾问的指导及解读。华泰证券不因任何订阅本公众号的行为而将订阅者视为华泰证券的客户。 本公众号转发、摘编华泰证券向其客户已发布研究报告的部分内容及观点,完整的投资意见分析应以报告发布当日的完整研究报告内容为准。订阅者仅使用本公众号内容,可能会因缺乏对完整报告的了解或缺乏相关的解读而产生理解上的歧义。如需了解完整内容,请具体参见华泰证券所发布的完整报告。 本公众号内容基于华泰证券认为可靠的信息编制,但华泰证券对该等信息的准确性、完整性及时效性不作任何保证,也不对证券价格的涨跌或市场走势作确定性判断。本公众号所载的意见、评估及预测仅反映发布当日的观点和判断。在不同时期,华泰证券可能会发出与本公众号所载意见、评估及预测不一致的研究报告。 在任何情况下,本公众号中的信息或所表述的意见均不构成对任何人的投资建议。订阅者不应单独依靠本订阅号中的内容而取代自身独立的判断,应自主做出投资决策并自行承担投资风险。订阅者若使用本资料,有可能会因缺乏解读服务而对内容产生理解上的歧义,进而造成投资损失。对依据或者使用本公众号内容所造成的一切后果,华泰证券及作者均不承担任何法律责任。 本公众号版权仅为华泰证券所有,未经华泰证券书面许可,任何机构或个人不得以翻版、复制、发表、引用或再次分发他人等任何形式侵犯本公众号发布的所有内容的版权。如因侵权行为给华泰证券造成任何直接或间接的损失,华泰证券保留追究一切法律责任的权利。华泰证券具有中国证监会核准的“证券投资咨询”业务资格,经营许可证编号为:91320000704041011J。
如果您希望第一时间收到推送,别忘了加“星标”! 核心观点 毫末发布自动驾驶首个生成式大模型:DriveGPT 4月11日,毫末举行第8届AI DAY,发布了纯视觉为主的DriveGPT大模型,该模型现阶段主要用于解决自动驾驶认知决策问题,可以通过输入驾驶场景数据进行多场景预测并规划最佳行径路途。目前DriveGPT已经包含4000万公里的量产车驾驶数据、1200亿参数,拥有19.6亿个30万类场景标签。DriveGPT将在今年新摩卡DHT-PHEV车型首发落地,提升HPilot高速/城市NOH安全性和流畅性。我们认为GPT大模型范式有望赋能垂直领域智能驾驶感知标注、决策推理等核心环节,加速智驾落地,同时大模型研发或推动驾驶数据和算力需求快速增长。建议关注L2级自动驾驶/AI算力产业链。 正文 DriveGPT:大模型赋能场景生成、轨迹预测、推理决策 毫末智行发布了其DriveGPT自动驾驶生成式大模型,具体逻辑:(1)感知环境离散化后作为token设计drive language;(2)输入大量驾驶场景数据,利用transformer模型生成系列决策结果;(3)RLHF:将人工挑选困难场景Clips(数据组)输入训练模型,对生成结果进行最优解排序;(4)Reward Model强化学习。DriveGPT目前可以根据历史一段时间驾驶场景序列数据,不断生成未来可能发生的多种驾驶环境并预测每种情况下车辆行驶轨迹。此外公司目前正设计利用prompt提示优化输出结果,并给DriveGPT加入思考链,使驾驶策略具备逻辑可解释性,解决transformer黑盒模式潜在问题。 机会:大模型有望解决行业数据标注准确率及成本困境 视觉识别是开发大模型的基础能力之一,识别传感器输入图像中的车道线、车辆、行人、交通灯等要素并进行数据标注才能获得大量的可用训练数据集。我们看到DriveGPT等大模型可以很好地自动识别图像以替代人工标注,据毫末会上表示,DriveGPT可以将交通场景图像的标注费用从行业平均约5元/张降至约0.5元/张,计划逐步向合作伙伴开放该服务。同时,我们认为近期Meta的CV模型SAM有望赋能自动驾驶行业,SAM无需额外训练即可自动完成分割,提升机器视觉,有利于自动驾驶可用训练集快速积累。 挑战:国内AI智能驾驶大模型应用普及仍面临数据需求和算力等挑战 (1)数据:DriveGPT目前参数量约1200亿,拥有约4,000万公里的量产车驾驶数据。参考行业龙头特斯拉2020年已有超48亿公里数据,大模型赋能下我们认为国内公司或将加快智能驾驶系统量产上车步伐,加快数据搜集回馈模型训练。(2)算力:特斯拉FSD背后拥有1.4W个GPU训练集群;毫末建设MANA OASIS中心给DriveGPT提供67亿次/秒的高性能浮点运算,2T/秒存储带宽,以及800G/秒通信带宽支持;小鹏计算中心“扶摇”提供算力达600PFLOPS。大模型、大数据驱动的智能驾驶对算力提出了更高要求,有望驱动算力基础设施需求。建议关注L2级自动驾驶/算力产业链。 点击查看原报告 风险提示:L3智能驾驶落地进度较缓,数据/算力积累程度不及预期。 本材料所载观点源自2023年4月12日发布的报告《从DriveGPT看大模型如何赋能智驾》,分析师:黄乐平 SAC No.S0570521050001 | 陈旭东 SAC No.S0570521070004 | SFC No.BPH392,对本材料的完整理解请以上述研报为准。 关注我们 华泰证券研究所国内站(研究Portal) https://inst.htsc.com/research 访问权限:国内机构客户 华泰证券研究所海外站 https://intl.inst.htsc.com/mainland 访问权限:美国及香港金控机构客户 添加权限请联系您的华泰对口客户经理 免责声明 ▲向下滑动阅览 本公众号不是华泰证券股份有限公司(以下简称“华泰证券”)研究报告的发布平台,本公众号仅供华泰证券中国内地研究服务客户参考使用。其他任何读者在订阅本公众号前,请自行评估接收相关推送内容的适当性,且若使用本公众号所载内容,务必寻求专业投资顾问的指导及解读。华泰证券不因任何订阅本公众号的行为而将订阅者视为华泰证券的客户。 本公众号转发、摘编华泰证券向其客户已发布研究报告的部分内容及观点,完整的投资意见分析应以报告发布当日的完整研究报告内容为准。订阅者仅使用本公众号内容,可能会因缺乏对完整报告的了解或缺乏相关的解读而产生理解上的歧义。如需了解完整内容,请具体参见华泰证券所发布的完整报告。 本公众号内容基于华泰证券认为可靠的信息编制,但华泰证券对该等信息的准确性、完整性及时效性不作任何保证,也不对证券价格的涨跌或市场走势作确定性判断。本公众号所载的意见、评估及预测仅反映发布当日的观点和判断。在不同时期,华泰证券可能会发出与本公众号所载意见、评估及预测不一致的研究报告。 在任何情况下,本公众号中的信息或所表述的意见均不构成对任何人的投资建议。订阅者不应单独依靠本订阅号中的内容而取代自身独立的判断,应自主做出投资决策并自行承担投资风险。订阅者若使用本资料,有可能会因缺乏解读服务而对内容产生理解上的歧义,进而造成投资损失。对依据或者使用本公众号内容所造成的一切后果,华泰证券及作者均不承担任何法律责任。 本公众号版权仅为华泰证券所有,未经华泰证券书面许可,任何机构或个人不得以翻版、复制、发表、引用或再次分发他人等任何形式侵犯本公众号发布的所有内容的版权。如因侵权行为给华泰证券造成任何直接或间接的损失,华泰证券保留追究一切法律责任的权利。华泰证券具有中国证监会核准的“证券投资咨询”业务资格,经营许可证编号为:91320000704041011J。
大部分微信公众号研报本站已有pdf详细完整版:https://www.wkzk.com/report/(可搜索研报标题关键词或机构名称查询原报告)
郑重声明:悟空智库网发布此信息的目的在于传播更多信息,与本站立场无关,不构成任何投资建议。